
From Personal Tool to Community Resource:
What’s the Extra Work and Who Will Do It?

Erik H. Trainer, Chalalai Chaihirunkarn, Arun Kalyanasundaram, James D. Herbsleb
Institute for Software Research

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213

{etrainer, cchaihir, arunkaly, jdh}@cs.cmu.edu

ABSTRACT
Sharing scientific data, software, and instruments is
becoming increasingly common as science moves toward
large-scale, distributed collaborations. Sharing these
resources requires extra work to make them generally
useful. Although we know much about the extra work
associated with sharing data, we know little about the work
associated with sharing contributions to software, even
though software is of vital importance to nearly every
scientific result. This paper presents a qualitative,
interview-based study of the extra work that developers and
end users of scientific software undertake. Our findings
indicate that they conduct a rich set of extra work around
community management, code maintenance, education and
training, developer-user interaction, and foreseeing user
needs. We identify several conditions under which they are
likely to do this work, as well as design principles that can
facilitate it. Our results have important implications for
future empirical studies as well as funding policy.

Author Keywords
Software sharing; scientific software; extra work; scientific
communities; qualitative methods.

ACM Classification Keywords
H.5.3 [Information Interfaces and Presentation (e.g., HCI)]:
Group and Organization Interfaces – Computer supported
cooperative work.

INTRODUCTION
We are in an era of distributed, large-scale science that
depends not only on new technological advances, but also
on “human infrastructure,” complex arrangements of
people, organizations and communities [22]. Studies of
cyberinfrastructure and e-Science have pointed out that
creating this infrastructure is an ongoing task, involving
continuous collaboration, alignment, and adjustment among
many stakeholders [3]. Sharing scientific resources, a

central dimension of this collaboration, has been a topic of
great interest to the CSCW community as of late [4,10,29].

Sharing scientific resources requires extra work, voluntary
or involuntary unpaid labor, to make them generally useful.
A significant portion of recent research on sharing in
science has documented extra work from the perspective of
the recipient: locating data [39], interpreting data [5,29],
and assessing their reliability [10,15]. There is also extra
work from the perspective of the sharer. Standardizing data,
for instance, requires reaching agreement on key terms,
creating protocols for data collection, providing tutorials
and training on implementing the standards, and translating
the standards to forms, spreadsheet templates, and
interfaces [2,26].

The above studies have focused primarily on the work
scientists do to share data. Other than work showing that
scientists share software based on social ties [18], we know
little about the extra work to make contributions to software
generally useful, even though software is a major output of
the scientific process. More than other assets produced by
scientific work, such as published results and archived data,
software requires continuous maintenance effort or it soon
loses its value, as it becomes incompatible with new
releases of operating systems, middleware, and
complementary software.

Extra work provides powerful leverage for other scientists
who can use the software to produce new knowledge. If a
scientist spends 10 hours writing a piece of software, plus
an additional hour to make it generally useful, other
scientists who use it get the benefit of that 10 hours of
work. Even if only 1 other scientist uses it, the benefit from
the perspective of the community is 10 hours. If 2 scientists
use it, 20 hours, and so on. If we can understand what this
extra work is, and under what conditions it is likely to
happen, we can find ways to facilitate it.

We therefore address the following research questions:

(1) What are the kinds of extra work that scientists do to
make contributions to software generally useful?

(2) Under what conditions are scientists likely to perform
(or not perform) extra work?

(3) What are the design principles that can facilitate extra
work?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CSCW '15, March 14 - 18 2015, Vancouver, BC, Canada
Copyright 2014 ACM 978-1-4503-2922-4/15/03…$15.00
http://dx.doi.org/10.1145/2675133.2675172

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

417

To answer these questions, we conducted a multiple case
study of four scientific software communities. We
interviewed developers and end users, having them describe
contributions to and use of the software, and activities
within their communities. We found that our participants
conducted a rich set of extra work, and several
considerations influenced their decisions to do so. We also
identified several principles that can facilitate extra work.
In the following sections we review related research,
describe our study, present the results of our interviews, and
discuss the implications of our findings.

BACKGROUND

The Human Work of Large-Scale Science
The research challenges of today demand large-scale
collaborations involving multiple research institutions and
scientific domains, often as a condition of funding. Creating
the necessary infrastructure for such projects is an ongoing
task requiring the establishment and maintenance of people,
groups, and technologies. For instance, Bietz et al. [3,4] talk
about “aligning,” which is the work that developers do to
enact a relationship in a way that enables it to produce
within a cyberinfrastructure. Developers of middleware, for
example, must balance building systems that can be used
across multiple projects, while also ensuring that their
software meets the needs of funding sources. In order to
find potential collaborators, developers attend seminars,
watch funding calls from various agencies, and follow
trends in multiple scientific domains [4].

Another kind of work, “leveraging,” emphasizes how an
existing relationship with a person, artifact, or organization
can build or strengthen another relationship [3]. To get
access to a novel technology, a project may create a
partnership with a research project located at the same
university that is developing the technology.

Extra Work of Sharing Scientific Resources
In the context of large-scale scientific collaboration, recent
research has examined the work of sharing scientific data,
not scientific software. A notable exception is work by
Huang et al. [18] that identified social practices around the
sharing of and control over commercial and open-source
software in a bioinformatics research team. For instance, in
order to use software that another team developed,
scientists leveraged existing relationships with members of
the other team and negotiated co-authorship on
publications. Our work is distinct by looking at the work to
make features of the software generally useful to a
community of users, beyond a particular laboratory, and on
open-source software in particular.

Much of the research on data has documented work
required by the recipient. Zimmerman [39], for example,
documented how ecologists locate data for reuse. She found
that ecologists devised systematic sampling methods and
used research journals to bound their data searches by
timeframe and geography.

Other research has focused on the work of data
interpretation [5,29]. For instance, Rolland & Lee [29]
found that postdoctoral researchers reusing cancer
epidemiology datasets spent significant amounts of time
consulting manuscripts to see how the data were written
about, reading study protocols and documentation to
understand how key variables were constructed, and even
tracking down former study members in their new jobs.

Recipients of scientific data also assess the data’s relevance
and trustworthiness. Faniel & Jacobsen [10] observed that
earthquake engineering researchers assess relevance by
generating criteria related to their research questions and
comparing those criteria to colleagues’ experimental test
setups and parameters, which they find in journal articles
describing the experiments or through direct contact with
the researchers. To assess trustworthiness, they consult
experiment documentation first and speak with colleagues
who produce the data to get basic facts or clarify
inconsistencies in the data.

Sharing scientific resources also requires extra effort on the
part of the sharer. For example, standardizing data for
sharing can involve creating laboratory protocols, reaching
agreement on definitions of key terms, translating standards
to forms, templates, smartphone apps, and web sites, and
developing material transfer agreements [2]. In a study of a
standardization process in an ecological research
community, Millerand et al. [26] documented how
developers of the standards created training sessions for
information managers at distant sites to teach them how to
implement the standard.

There are likely some kinds of extra work that the sharer is
in a better position to do, and some kinds of extra work that
the recipient is in a better position to do. On the one hand,
when deciding to offer up a piece of software for the
community, the sharer understands what its functions do,
and will be able to modify it more easily than the recipient.
It will therefore be appropriate for that scientist to create
documentation for the software and fix bugs that surface
after it goes into operation. On the other hand, the recipient
may know more about intended use cases for the software,
or other data and tools with which the software must
interoperate. The recipient can also provide the sharer with
valuable feedback. The role of the recipient is an important
one. In fact, product innovations often come from users,
who know more about what the product should do, and
what it means to do it better [13,14].

It is clear why recipients do extra work; they are the ones
who need and will use what sharers provide. The
motivations of sharers, however, are not as easily
explained. Undertaking extra work without tangible reward
is a very real concern, shown in early CSCW research to be
a reason why groupware systems fail [12,27]. Sharers of
data may nevertheless get fuller use out of their data, or the
ability to negotiate co-authorship on publications produced
using the data. To understand why someone would do extra

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

418

work on software, we turn to the literature on open-source
software.

Open-Source Software: Extra Work for Others (for free)
There are three primary individual motivations for
contributing to open-source software [8]. Intrinsic
motivations include fun and enjoyment [21] and learning
opportunities [28,31,38]. Internalized extrinsic motivations
include fulfilling personal needs [20,23].

Extrinsic motivations such as reputation and opportunities
for career development have been the focus of increased
study in recent years [9,25,28]. Studies of transparent
software development environments such as GitHub
(http://github.com/) have found that developers actively
manage their profiles to gain greater attention and visibility
for their work [24]. The number of followers a developer
has, for example, signals their status. The transparency into
development activities that GitHub provides allows others
to gauge developers’ expertise [9]. Employers have even
started using GitHub to find and recruit potential employees
[25].

The trouble is that whereas reputation is an effective
motivator in the world of open-source, it is significantly
less of a motivator—perhaps even irrelevant—in the world
of scientific software. The reason is that scientists receive
reputation for the results they publish, not the software they
develop. Scientists receive credit for software only
indirectly. In a study of BLAST [1], a key bioinformatics
tool, Howison & Herbsleb [16,17] concluded that
improvements to the software motivated by academic credit
were less likely to be integrated. They argued that this is
because integration makes it harder to see who did what,
undermining the ability of reputation to function as a
reward.

METHOD
To address our research questions, we conducted a multiple
case study of four scientific software communities
characterized by the availability of rich data and community
activity. Three considerations influenced our selection of
cases. First, we wanted clearly infrastructural projects and
end user projects, both in the same domain, in order to
understand how the presence of close ties to users
influences the kinds of extra work conducted. We found
very active bioinformatics projects meeting this criterion in
Biopython and Bioclipse. Biopython is a set of Python
software libraries designed for use by other scientists who
develop software [6]. The project began in 1999, and as of
this writing has 69 contributors to the source-code, and 487
“stargazers,” people who subscribe to updates made to the
repository, on GitHub. The source-code has been “forked,”
cloned by someone to use it as a starting point for their own
contributions, 283 times. Bioclipse, in contrast, is a
biological workbench application providing a range of
functionality for end user biologists [33,34]. The first
release of Bioclipse was in 2007. In 2009, Bioclipse was re-
written to allow end users to automate functionality using

the Bioclipse Scripting Language, and to share reproducible
scripts. The project has 8 contributors, 13 stargazers, and 11
forks on GitHub.

Second, we wanted to look at a project that has paid
developers. The existence of a paid core might influence the
extra work that volunteers are willing to do, in that
volunteers may be less willing to do work that they perceive
to be the responsibility of paid developers. Throughout this
paper we also use the term “core” to refer to developers
who are listed as such on their community’s website, who
self identify as core, or who others identify as core. All paid
developers are core, but not all core are paid.

We found a project with paid developers in Bioconductor,
which comprises components, often R packages, for
analysis of genomic data generated by biological wet lab
experiments [11]. First released in 2001 with 15 packages,
Bioconductor now contains 824 packages. Bioconductor’s
source-code is hosted in a Subversion repository instead of
GitHub, so we were unable to collect information about
contributors, stargazers, and forks. The Bioconductor
website, however, tracks download statistics for all
packages. From August 2013 to July 2014, there were
9,354,646 downloads from 2,35,401 IP addresses
(http://www.bioconductor.org/packages/stats/). In addition,
the Bioconductor mailing list has 3,500 subscribers,
suggesting a large community of users. Each package has
one or more volunteers who maintain it (although paid
developers may also maintain packages). The team of paid
programmers is located at the Fred Hutchinson Cancer
Research Center in Seattle, Washington, USA. Their job is
to review user-submitted components, manage official
releases, provide user support, and develop experimental
packages.

Third, we wanted another project to contrast with the others
on many dimensions, with the intention to see large
differences and to see if our findings generalized across
these many dimensions. We therefore selected NetLogo, a
project used for simulation, instead of analysis [37].
Developed in 1999, NetLogo was closed source until it was
moved to GitHub in 2011, where it has 13 contributors, 165
stargazers, and 46 forks. NetLogo is in use by educators as
well as researchers in the physical and social sciences.
NetLogo end users are also active contributors, adding
another dimension to sharing in this particular community.
Although they do not make direct source-code contributions
to NetLogo, end users do write models using the NetLogo
language that simulate various natural and social
phenomena, and can share these models with others on the
Modeling Commons (http://modelingcommons.org/), a
community model sharing site. The Modeling Commons
currently lists 1,272 models. End users can also write and
share extensions, which are separate plug-ins that add
capabilities to the modeling environment. For instance, the
R extension (http://netlogo-r-ext.berlios.de/) adds the
capability to send data between NetLogo and R and to call

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

419

R functions from within NetLogo. The NetLogo extensions
page lists 37 user submitted extensions. Like Bioconductor,
NetLogo has paid developers.

Among the three biology-related projects in our sample,
Bioconductor and Biopython appear to be more popular and
actively developed compared with Bioclipse. Using a tool’s
Google Scholar search results as a rough indicator of its
usage in scientific work, we found that 24,800 publications
mention Bioconductor, 1,420 mention Biopython, and 263
mention Bioclipse. NetLogo appears to be popular across
multiple domains, and the simulation environment, models,
and extensions are all actively developed. We found that
8,970 publications mention NetLogo.

Data Collection
We conducted semi-structured interviews with 39
participants (see Table 1). We identified our participants by
inspecting a combination of community web pages and
wikis, mailing lists, and commit access listings from the
source code repositories. For Bioconductor and NetLogo,
we targeted participants who were paid developers and
participants who contributed in their spare time in order to
understand differences in motivations and types of extra
work these two groups conducted. For NetLogo, we
targeted equally model and extension developers in order to
understand differences between extra work associated with
each of these end user-submitted tools and the main
NetLogo source-code. We solicited participants by e-mail
and interviewed them using either Skype or Google
Hangouts. In the interviews we first asked participants to
talk about their role and activity in the project in general,
and then we asked about their recent contributions in
greater detail. Interviews lasted 45 minutes on average. A
transcription service firm transcribed all interviews.

Analysis
We used techniques from grounded theory [7] to analyze
the interview transcripts. We first imported all transcripts
into the Dedoose qualitative data analysis software package
[32]. We then identified and conducted open coding on
statements about work that participants carried out to make
the software of general use, and their reasons for doing so.
When possible, we triangulated participants’ statements
with work artifacts hosted in project source-code
repositories as well as descriptions of, and discussions
about, those artifacts posted in mailing lists and web pages.

In the next phase of analysis we wrote, shared, and
discussed descriptive memos about emerging themes in the
dataset. We met weekly to unify, refine and collapse codes
where there was commonality, using themes from our
memos as support. We applied the resulting set of codes to
the remaining interviews, sometimes revealing additional
behaviors not captured by our existing set. In such cases we
extended our codes as appropriate. We continued this
process until our data no longer revealed new phenomena
captured by our categories.

Table 1. Summary of interview participants.

RESULTS

RQ 1: What are the kinds of extra work that scientists
do to make contributions to software generally useful?
We found that participants conducted a rich set of extra
work. Our analysis revealed five categories of extra work:
community management, code maintenance, education and
training, developer/user interaction, and foreseeing user
needs.

Community Management
Participants described doing work that supported
community management activities. This work included
following community norms and guidelines, attending core
team meetings, evaluating potential contributions,
promoting the project in the broader community, soliciting
contributions from community members, announcing work
in progress, and staying aware of community members’
activities.

Abiding by Community Norms and Guidelines
Community norms and guidelines provided participants
guidance about what extra work to conduct. Participants
from Biopython and Bioconductor (P37, P31, P40, P7, P2)
described following guidelines, such as thoroughly testing
the code, collating examples and documentation, reusing
common data structures, following naming conventions,
and breaking the code apart into logical pieces. For
instance, upon failing the tests required to check his code
into the Biopython repository, one respondent described
that a core developer told him to change the syntax of his
code to make it compatible with all the versions of Python
that Biopython supports (P40).

The Bioconductor community has additional expectations
about the work that follows code contribution. Members of
the paid core (P23, P27, P41, P42) explained that each
Bioconductor package has one or more maintainers who
address support requests and bug reports.

NetLogo and Bioclipse, in contrast, do not have clear
guidelines with respect to contribution. Yet NetLogo end
users who shared their models, for instance, learned how to

 Volunteer Paid

Biopython P1, P2, P3, P4,
P5, P6, P7, P8,
P21, P24, P30,
P33, P40

Bioclipse P17, P18, P22,
P26, P29

Bioconductor P31, P35, P37,
P38, P44

P23, P27,
P41, P42

NetLogo P11, P12, P13,
P14, P15, P16,
P20, P25, P36

P9, P10,
P34

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

420

structure those models based on reviewing existing models
bundled with the NetLogo software and models shared on
the Modeling Commons (P11, P13, P16). From these
reviews, participants sensed that models should be simple
and generalizable:

“What people tend to like are models that are relatively
simple, and if you want something else, you put them in a
separate model. [My model] on the [Modeling
Commons] isn't exactly like that, but the one that's on my
hard drive is not at all like that. It's just a bunch of
different tools thrown into the same NetLogo model…no
one wants to look at that unless they're doing stuff with
it.” (P11, NetLogo)

P11 described spending a few hours over a week’s time to
clean out the extraneous functionality in his model before
sharing it on the Modeling Commons. Another participant
described that he believed his model was simple enough to
be generally applicable, but that he still needed to document
it, as suggested by the NetLogo model template, before he
felt it was ready to share with others (P13).

Attending Core Team Meetings
Attending face-to-face meetings played an important role
for core developers. Members of the Bioconductor paid
core team, for example, described meeting every three
weeks to discuss challenges related to the development of
experimental packages, policies around package reviews,
how to make resources on the website more usable, and
developing courses on the use of particular Bioconductor
packages (P23, P27). NetLogo core developers met face to
face every six months to discuss design changes,
demonstrate prototype functionality to one another, and
discuss future directions for the project with their grant
partners (P20, P10).

Evaluating Submitted Contributions
Participants also talked about the work of assessing
potential contributions, often doing their best to help the
submitter get the contribution into an acceptable state. This
typically involved back and forth discussions in a GitHub
“pull request,” a workflow method where a contributor
submits proposed code changes to a project, which are
integrated into the main branch only with the repository
owners’ approval. Pull requests are public; anyone can
comment on them. Respondents from projects hosted on
GitHub (i.e., Biopython, Bioclipse, and NetLogo) recalled
that pull requests generated discussion from repository
owners and other developers, who pointed out possible
incompatibilities with the code and other tools within their
workflows, and suggested possible fixes and improvements
(P10, P9, P6, P1, P7, P20, P42).

Paid developers of Bioconductor are responsible for
reviewing user-submitted packages. As such, we did not
consider their reviews extra work. However, we found that
some individuals not paid to work on Bioconductor (e.g.,
P38) volunteered to review packages, which entailed

reading through people’s code, checking for adequate unit
tests, checking for reuse of common data structures, and
looking for thorough documentation. A paid Bioconductor
developer explained that the review process usually took a
whole afternoon to complete (P42).

Advertising Project, Demonstrating Impact
To promote their software and generate enthusiasm for it
among the broader community, participants shared updates
to the software on Twitter and Facebook (P10, P34, P44),
wrote papers describing the software (P23), and organized
workshops (P29, P23, P27).

Often underlying project promotion was motivation to
increase the software’s perceived scientific impact.
Participants talked about the importance of demonstrating
to funding agencies their software’s value to the
community, employing usage indicators to do so (P27, P22,
P29, P34). For instance, in annual reports to funders,
participants included the Bioconductor download statistics
for their packages and citations to key publications (P22,
P27). In fact, all projects in our sample provide specific
citation guidelines for scientists who publish results
obtained using the software.

Soliciting Contributions
Several participants talked about the work of finding project
contributors (P7, P38, P34, P42). Upon noticing activities in
end users’ project “forks,” participants e-mailed them
asking when the code would be ready to integrate (P7, P8,
P38). Some core developers (e.g., P34) also encouraged end
users to implement ideas for features discussed on the
mailing list.

Several core developers from Biopython and Bioconductor
described having ideas for functionality, but prioritized
other responsibilities over implementing those ideas (P7,
P4, P41, P42). In response, they applied to the Google
Summer of Code (GSoC)
(https://developers.google.com/open-source/soc/) program
to find a student to produce the code. GSoC is an annual
program sponsored by Google that pays students to develop
features for an open-source project during the summer. In
some cases, students continued to contribute after the
summer (P4, P5, P8, P44).

Announcing Work in Progress
Participants sometimes made announcements on the
mailing list to notify others what they were working on.
Participants described that they did this to gather
suggestions for improvements (P36, P8, P5) as well as
feedback on the usefulness of the functionality (P5). One
participant from Biopython described that he preferred to
announce proposed changes over the mailing list before
making a pull request because the mailing list can
potentially reach a broader audience—not just developers
but end users as well (P5).

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

421

In the Biopython project in particular, GSoC students
posted weekly blogs containing descriptions of their
ongoing work (P8, P7, P30).

Monitoring other People’s Activities
Participants also described trying to get a general sense of
what others in the community were doing. To this end they
browsed the project mailing lists, GitHub project activity
visualization and feeds, and question and answer forums.
For example, participants reported periodically checking
active forks of their projects to get a general sense of what
people were doing with their code (P9, P7, P34, P36). As
the de facto leader of Biopython told us: “I find that useful
to know what other people have been up to just in case
there's something I need to be aware of” (P7, Biopython).

Code Maintenance
We found that participants made efforts to ensure that their
software worked correctly before and after making it
publically available. These efforts included fixing bugs,
managing dependencies in the code, monitoring code usage,
and testing.

Fixing Bugs
One of the most common types of extra work during
maintenance was fixing bugs. Respondents described
receiving bug reports through issue tracking systems and
through e-mail, over the mailing list, and in pull requests
themselves (P12, P37, P20, P24, P1, P35). In many cases,
participants were willing to fix reported bugs. In other
cases, decisions to fix bugs depended on the importance of
the bug, the existence of workarounds, and developers’
spare time (P10, P12).

Social capital and reciprocity seemed to play important
roles in fixing bugs (P20, P29, P5, P14). For example, one
participant recalled a NetLogo extension that he wrote years
earlier but no longer used. He described fixing bugs that a
former professor of his continued to report even though it
was “kind of a pain to work on it” (P20, NetLogo).
Members of the Bioclipse project contributed to another
project on which Bioclipse has a dependency. One
respondent explained that this “giving and taking” ensured
that bugs in the other project were fixed quickly (P29,
Bioclipse).

Managing Dependencies
We found that participants spent time resolving
dependencies in their code. The most common occurrence
was where a participant noticed that their software was
failing. The participant would very quickly contact the
developer of the depended upon code through e-mail or the
mailing list to resolve the error (P37, P31).

Work associated with dependency management seemed to
be linked to the architecture of the project. The
Bioconductor package system, for example, allows
contributors to reuse certain data structures and existing
algorithms, enabling reproducible research and
interoperability among packages (P27). It is exactly this

reuse that creates dependencies. The Bioclipse and NetLogo
architectures allow contributors to write extensions, which
are like plug-ins, (and models in the case of NetLogo)
without needing to know how to modify the core
components. This allows extensions to evolve
independently (P10), but puts the maintenance burden on
extension developers (P10, P15). For example, one
NetLogo extension developer maintained two different
versions of his extension so that it worked with the older
and newer versions of NetLogo (P15). Because Biopython
is a set of libraries, it comprises many wrappers for other
tools. Participants explained that they were accustomed to
new changes in file formats and new switches arising from
new functionality included in new releases of BLAST [1]
(e.g., P7). Fortunately, very often the fix involved only
changing a few lines of code.

Monitoring Code Usage
We found that participants actively kept track of how others
used their code. Some participants occasionally checked the
number of downloads of their software (e.g., P15, P2).
Others, in addition, instrumented their software to collect
usage data (P22). Participants described these statistics as
important to include in grant reports and funding
applications (P22, P27, P10).

Usage information also supported developers in addressing
user problems. The core developers of NetLogo described
setting up RSS feeds to watch for questions about NetLogo
on Stack Overflow (http://www.stackoverflow.com/), a
popular question and answer website for programmers
(P10, P34). Maintainers of Bioconductor packages watched
the mailing list for questions about their components (P31,
P44). Actively monitoring how others were using code was
relatively rare in Biopython. One respondent mentioned
setting up a RSS feed to monitor questions about his
contributions. He also set up a special time several days a
week to look at questions and answer them. He felt a
particular satisfaction in helping people and felt that it was
a good learning opportunity to do so (P8).

Testing
The majority of participants from Biopython, Bioclipse, and
Bioconductor described regularly testing their software,
often as a prerequisite for contribution.

In NetLogo, we noticed more variance. Most end users who
wrote NetLogo models at least relied on syntax checkers
available in the NetLogo runtime environment (P14, P13,
P15, P16, P11). Of that group, some performed additional
testing using agent based simulation model validation
techniques (P14, P13), especially when they submitted their
models for publication. Participants who wrote NetLogo
extensions described doing minimal testing, such as spot
checking output by hand and having friends try it out to see
if it worked on their computer (P11, P12). One participant
explained that more extensive testing was unnecessary
because it was not big enough to be worth the effort (P12).

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

422

Education and Training
Other extra work supported learning about the software.
Participants described running tutorials on how to use the
software to perform common analyses, mentoring other
community members, and using the mailing list to learn
about technologies relevant to them.

Running Tutorials
We found that participants in all four communities attended
workshops, often collocated with community conferences,
aimed to teach people how to use the software. Participants
described running tutorials, one or two hour long training
sessions where workshop participants learned how to use
package APIs to work through a typical analysis on a
sample dataset (P41, P38, P7, P1, P11, P27).

Mentoring Others
Several participants described mentoring new, potential
members of the community (P1, P42, P7, P4, P41, P40).
The most common occurrence of mentoring was GSoC,
where active members of the community volunteered to
mentor a student while the student proposed and developed
features for the project.

The work of mentoring GSoC students typically involved
corresponding with students weekly via videoconference or
e-mail, over a period of three months, to discuss progress
and any difficulties related to proposed goals. Mentors
taught students about how to contribute to the project, as
well as software engineering practices more generally.
Sometimes mentoring was far-ranging, involving career
choices and sample applications for jobs (P7, P1).

Studying the Mailing List
A few participants mentioned that they actively read the
project mailing list to find new technical knowledge.
Questions and answers about modules related to their own
work served as resources that could potentially be relevant
in the future (P31, P37).

Developer/User Interaction
Much extra work evolved from interactions between
developers and end users. These activities included
answering end users’ questions, adding requested features,
and suggesting fixes for others’ code.

Answering Questions
Many participants described responding to users’ questions
related to the software. Their answers clarified how to
interpret errors encountered when executing the code (P31,
P37, P7), how to extend the software to provide additional
functionality (P36, P44, P38, P10), or where to find a
particular component that addressed the asker’s particular
need (P12). Participants described that they had discussions
with a lot of back and forth communication, where
somebody would ask for more detail, and the conversation
would “keep going like that for a while” (P36, NetLogo).

For paid developers of NetLogo and Bioconductor,
answering user questions consumed a significant portion of
their free time (P10, P42). They therefore selectively

answered questions for which they were particularly
knowledgeable (P27, P42, P15, P9). This strategy seemed
to be a natural fit for Bioconductor package maintainers,
who typically only answered questions related to their
packages (P31, P37, P35) but we observed that participants
from Biopython (e.g., P8, P5) used it as well. Some
participants from Bioclipse made themselves available to
users in real-time on Internet Relay Chat (IRC) (P29, P18).

Adding Requested Features
Participants often described receiving feature requests from
end users through e-mail and over the mailing list (P5, P15,
P12, P10). Requests deemed to take more time and effort
needed to pass a certain threshold of priority. A request was
considered low priority, for example, if there was an
existing workaround to achieve the desired result (P42,
P12). For instance, a participant described that he had a user
request to pass matrices to his NetLogo MATLAB
extension, but he didn’t implement the feature because the
same result could be achieved by writing a loop in NetLogo
to pass multiple arrays to his extension (P12).

For projects with funding (i.e., Bioclipse, Bioconductor,
NetLogo), the paid core generally considered feature
requests as high priority if they aligned with objectives
outlined in grants (P34, P10), or if there was a clear
community need for them (P34, P10, P27, P42).

Suggesting, Making Possible Fixes to Others’ Code
In some instances, participants not only reported bugs but
also provided solutions. Often, participants’ needs for the
corrected functionality motivated their suggestions (P6,
P20, P40, P3, P35, P37). Sometimes suggestions turned into
pull requests:

“When I report issues I usually like to give as much
information as possible and even point to possible fixes,
and often as I go through that process I just happen to
stumble-- I'm like ‘Oh, this is how I would fix that’ or
something like that, so then a report turns into a pull
request.” (P20, NetLogo)

Foreseeing User Needs
We found that participants often thought about the needs of
end users. Participants modified their code so that others
could reuse it, created documentation, and provided
detailed snippets of source-code illustrating how to use it.

Creating Flexible Code
Participants often considered the community who would
want to use their features, and the range of uses for which
they might want to use it (P42, P40, P24, P2). One
respondent, who described himself as “generically selfish,”
said:

“…I won’t code up something that I would not use. I
would not code up something that only I would use and
only idiosyncrasies…so I coded up things that I would
use and hopefully a lot of other people would.” (P24,
Biopython)

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

423

To create flexible code, participants made code syntax
compatible with multiple versions of the code interpreter
(P40), reused common data structures and annotation
resources from other developers (P23, P4), broke the code
apart into more logical pieces (P37, P11, P4), and provided
access to objects via interfaces, which aren’t limited to a
specific implementation (P31). One participant estimated
that making “something that’s maintainable and
accessible” took at least 30% more of his effort (P9,
NetLogo).

Participants noted, however, that there were limitations to
how much they could predict. Sometimes, making code
more flexible was in response to user requests or feedback
from source-code submission process (P31, P40).

Creating Documentation
Participants often documented their software contributions
(P23, P15, P12). Participants from the Bioconductor and
Biopython projects, which uphold certain levels of
documentation quality, described creating especially
extensive documentation (P35, P37, P31). Participants
from Bioclipse expressed creating documentation as well,
especially for setting up the Eclipse environment (P18).

We found more variability in the amount and quality of
documentation in NetLogo models and extensions. Some of
our NetLogo participants expressed that they kept more
documentation for themselves than for others (P15, P13,
P36), while others provided extensive documentation (P12,
P11) and kept readme files up to date (P9). One reason for
this variability may have been confusion about the
documentation requirements (P16), as the core NetLogo
team did not review contributions before accepting them, as
in Biopython and Bioconductor.

Creating Examples
We found that in some cases, participants described writing
additional code that demonstrated how to use their
software. In Bioconductor, these examples are required for
package acceptance. Contributors must write “vignettes,”
documents that provide a task-oriented description of the
package functionality, and include executable examples.

Some NetLogo extension and model developers described
creating examples as well. Extension developers provided
one-line code snippets how to call functions in their code
(e.g., P12). NetLogo core team members (e.g., P10) wrote
whole models to illustrate to end users how to build their
own. Indeed, NetLogo end users described incrementally
building on these examples in order to create their own
(P11, P25, P14, P16).

RQ 2: Under what conditions are scientists likely to
perform (or not perform) extra work?
We found that several considerations influenced whether
participants were willing to take on extra work. Participants
thought about their own interests, others’ interests, the
relevance of the work to their jobs, their obligations, their
current priorities, and their own expertise.

Does the work serve my interests?
Participants often considered whether doing extra work
would benefit their own interests. They were willing to do
certain kinds of extra work to publish papers describing
their software. For example, maintainers of Bioconductor
packages felt that abiding by community norms during the
submission process helped produce something that was a
mark of quality in the bioinformatics community (P38, P31,
P22), and could be recognized as such through publication.
Even though participants sensed that these so-called
“software papers” would not be as well regarded as
traditional publications, they felt that having a
Bioconductor package imparted to them “extra credit”
(P38, Bioconductor). Participants who created NetLogo
models described that they were willing to provide more
thorough documentation and conduct extensive testing on
their models submitted in conjunction with conference and
journal papers if they knew that the models would also be
subject to peer review (P13, P14).

Similarly, in order for current and future funders to assess
their work positively, participants were willing to advertise
and promote their projects, and monitor code usage (P22,
P10, P34).

Participants tended to do the extra work of suggesting fixes
when they needed working features for their own research
(P20, P40, P35, P7, P3, P37). They especially escalated
their efforts if a feature was high priority for them. As one
participant put it:

“The more I need a fix, the more time and energy I’m
willing to put into it.” (P20, NetLogo)

Participants seemed less likely to report or suggest fixes for
issues if they were not relevant to their own research. P16,
for instance, described not reporting broken models that
were unrelated to his graduate thesis.

Does the work serve others’ interests?
In addition to their own needs, doing extra work for free
seemed to depend on whether others would benefit from it.
When, for instance, developers were developing new
features for themselves they often thought about whether
others would need similar functionality. For example, one
participant, a Bioconductor contributor, talked about an
example where he asked his mentor for advice on adding a
feature to his GSoC project:

“I sent [P42], the other author on the package, just sort
of an update, ‘Here, this is what I added. Do you think
this is useful to the community? Would people actually
use this in their workflow?’” (P44, Bioconductor)

Other participants relied on their intuition (P41, P42, P27)
or received information about others’ needs in comments of
their pull requests (e.g., P20, P40) and in bug reports (e.g.,
P20). Others announced their work in progress over the
project mailing list in order to get feedback on whether the
work would be useful to others (P5). After getting a sense

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

424

how useful their contributions could be, participants
suggested fixes, created flexible code, examples and
documentation.

If participants considered their potential contributions too
domain specific (e.g., P40, P15) or if their contribution was
a personal customization (P20), they would generally not
try to create a more generic solution for others.

Does the work align with my job description?
Participants who were funded to work on projects, or whose
employers supported their work, tended to engage in certain
kinds of extra work, such as soliciting contributions,
attending core team meetings, fixing bugs, mentoring
others, and advertising and promoting the project. From
their institutes’ point of view, their work on the projects
served their immediate professional goals and made them
look good. As the de facto leader of Biopython explained:

“So my employers have been quite flexible and they
recognize that [Biopython] is something that is good for
my career, it's something the institute is associated with
in a positive way…So the practical hands-on work that's
done has been related to things that we needed to do here
for the research anyway.” (P7, Biopython)

If extra work instead aligned poorly with participants’ jobs
or career, they tended to ignore extra work such as adding
requested features or fixing bugs. For example, a graduate
student we spoke to mentioned that he didn’t add a feature
that someone else requested because he “wasn’t being paid
for it.” (P12, NetLogo)

Am I under obligation?
In some cases, even when extra work was not part of
participants’ job descriptions, they felt an obligation to do it
anyway. For example, becoming a Bioconductor package
maintainer created obligations to create examples, conduct
testing, manage dependencies, create documentation, and
answer questions. Some participants found that even if they
did not find extra work personally useful, peer review
panels required the work as part of their criterion for
publication (P13, P14). As one NetLogo modeler described:

“Many of the journals require if you use models in
your—in the research, then they want you to submit your
models, and they want them to be documented…I've
never [been] a big fan of formally specifying all the units
in my models. I just think it's an awful lot of work, and I
hadn't found it to be all that useful, but because I have to,
I do it.” (P13, NetLogo)

As we mentioned previously, social capital and reciprocity
seemed to play a role in the extra work of fixing bugs (P29,
P20). Participants seemed to feel socially obligated to
conduct this extra work.

Is this extra work high enough priority?
Participants prioritized certain kinds of extra work, such as
fixing bugs, answering questions, mentoring others,
suggesting possible fixes, monitoring code usage, and

adding requested features. Even if the work aligned well
with participants’ job descriptions, they had to prioritize it
with respect to other tasks. P10, a core developer of
NetLogo, described that critical bugs took priority over
bugs with existing workarounds. NetLogo developers also
described balancing user submitted bugs against
requirements directly from the PI of the grant that supports
NetLogo (P10, P34). Requirements originating from the PI
often took priority.

Educators teaching NetLogo in the classroom (e.g., P13,
P16) prioritized teaching responsibilities over extra work
like monitoring code usage and monitoring other people’s
activities. Biopython GSoC mentors described that, in
recent years, mentor time had become a limiting factor for
the number of students they could accept (P7, P1). One
former mentor explained that changes in his career, along
with having to support his family, made mentoring GSoC
students a lower priority than programming:

“It’s a lot of time to devote; and I think people have a
hard time allocating their time sometimes. You know?
That’s one of the reasons why I can’t do as much with
[mentoring] now. I have a family and I don’t have the
time to do that. And it’s like you have a certain amount of
hours for open-source stuff; and you’re like ‘why?’ And I
prefer to code I guess.” (P1, Biopython)

Do I have the expertise?
Participants explained that suggesting possible fixes and
answering questions depended on whether they had the
necessary expertise to do so. When participants had the
expertise to contribute a fix to a project, for example, they
would typically do it (P20, P40, P3). However, if
participants did not have the required knowledge, they
would not. A member of the NetLogo core team explained
how he decided not to contribute a fix to the git project:

“For example, I found a bug in git once. I narrowed the
bug down to a single line, fixed it for myself, and
reported it, but did not contribute my fix. I'm glad I didn't
too; when the bug was fixed, it required more extensive
knowledge of the coding standards of git, and more
extensive knowledge of the programming language (bash
in this case), than I had.” (P20, NetLogo)

RQ 3: What are the design principles that can facilitate
extra work?
We observed a number of common obstacles and
difficulties in performing extra work. For many of them, a
subset of participants had worked out effective solutions
that we think can be applied more broadly. For others,
existing solutions in other domains (e.g., mobile
applications) seem to be a good fit to the problem. In this
section, we describe a number of these problems and
obstacles, design principles we think could be helpful, and
the basis for this recommendation.

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

425

Use Checklists to Facilitate Learning About Community
Norms and Guidelines
Common problem. In addition to learning the technical
details of the scientific software under development,
scientists also have to learn about the guidelines and norms
of the communities. In the first section of the results we
discussed that abiding by these norms and guidelines
requires extra work from contributors. These guidelines
varied significantly across different communities and
participants often learned about these through interacting
with other members or reading them on the community’s
websites.

We also found that there is ambiguity in interpreting these
guidelines, as one NetLogo participant described:

“I'm not exactly sure what the standards are for [the
Modeling Commons] I noticed a pretty big range of
quality in the models. I definitely have downloaded a few
that were literally broken and just didn't run. So I'm not
sure what to make of the criteria for what makes an
appropriate model to submit there.” (P16, NetLogo)

Sometimes contributors only learn about these guidelines
after making a contribution. For example, in Biopython,
contributors often learn about expected coding standards
after they submit a pull request on Biopython’s GitHub
repository (e.g., P40). This is time consuming and only
compounds the extra work that already comes with
following guidelines.

Design principle. We believe many communities could
benefit by borrowing an idea from Bioconductor, which
maintains a short checklist of things to do before submitting
a contribution. This checklist helped contributors learn and
gauge the extra work required; all of our Bioconductor
participants understood the expectations associated with
package submission. Therefore, the extra work involved in
abiding by community norms and guidelines may be
considerably reduced by investing in checklists that help to
ensure consistency and completeness in submitting
contributions.

Provide Automated Support for Asking Questions
Common problem. We observed that a majority of scientists
were involved in answering questions on mailing lists,
which we found was another form of extra work. However,
mailing lists are known to have obvious drawbacks. For
instance, due to the large volume of emails, users may
sometimes fail to notice certain queries of relevance to
them. We found that scientists overcome some of these
limitations by adopting strategies such as checking emails
frequently (P42), using email filters (P31), and prioritizing
questions (P34).

Design principle. Other communities may benefit from the
NetLogo core team’s (e.g., P34, P10) practice of using
Stack Overflow, instead of mailing lists, for asking
questions:

 “People that go and ask a question on a mailing list
don’t usually search for the archives of the list before
asking their question. Stack Overflow kind of gives you
that for free because it analyzes the text of the question,
automatically suggests similar questions that could have
an answer that’s relevant for you.” (P10, NetLogo)

Social Q&A sites such as Stack Overflow allow users to
efficiently manage and answer questions. One of the
biggest advantages that such Q&A sites offer is the ability
to view questions that are similar and relevant to the one
that is being raised. In addition, users can mention similar
questions by simply specifying their URLs. Although
migrating from traditional mailing lists to sites such as
Stack Overflow might be one possible solution [35], it may
not be entirely feasible, since scientists may not readily
adopt new tools that do not directly benefit their domain
task [30]. Therefore, providing this extended functionality
in a way that allows users to continue using mailing lists
can significantly reduce the extra work associated with
answering questions.

Allow Contributors to Choose Between Private and Public
Modes of Evaluating Submitted Contributions
Common problem. Code contributions in open-source
software are often reviewed and discussed by other
members before the code is accepted. The use of pull
requests on GitHub to submit code contributions makes this
process transparent and easier for community members to
review and improve the code. However, we found that
scientists are not always comfortable with making the
review process public. For example, in Bioconductor, the
discussions between the reviewer and the contributor
happen through private emails and only the revised code is
uploaded to the public repository. While this form of review
takes more time than using pull requests, it allows new
contributors to learn in a friendlier environment and
prevents any embarrassment that they might often face
(P42). However, a few Bioconductor contributors we
interviewed did not mind if their code reviews were
accessible to all (P31). On the other hand, a transparent
review process in a community like Biopython might deter
potential contributors.

Design principle. Drawing from projects with very different
levels of transparency in the evaluation process, we believe
that other communities may find it helpful to allow
contributors to choose between these forms of evaluating
code contributions rather than enforcing a protocol. In some
cases, this may help facilitate evaluating submitted
contributions.

Allow Users to Provide Feedback Within the Software, in as
Few Steps Possible
Common problem. After contributions have been made, we
found that feedback allows developers to evaluate how well
they serve the needs of others and inform about what they
should do to serve those needs. For example, P12, who
developed an extension for NetLogo, mentioned that he had

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

426

updated the documentation a few times after he received
emails from the users. However, some participants (e.g. P9,
P36) said that they rarely received feedback from users,
although they were aware that their software was being
used due to the number of downloads.

Design principle. We think that communities could benefit
from techniques applied in the mobile applications domain,
which allow users to rate and provide comments directly
within the software. Examples include one-time rating
popups and easy to remove banners at the top of the screen.
By allowing users to effortlessly provide feedback on how
they are using the software and, if possible, who they are,
these designs would not only facilitate extra work around
monitoring code usage, but also give developers more
information that could help foreseeing user needs for other
contributions. These techniques could therefore reduce the
effort of users to find a channel for giving feedback to
developers.

Separate Requested Features from Reported Issues
Common problem. There was a sense among our
participants (e.g., P34, P35) that GitHub is a place for
developers whereas the mailing list is a place for end users.
In typical software development practices, bugs and
requested features are reported to a central issue tracking
database. In many cases, the interfaces to these databases
reside on GitHub. Whereas developers may expect to find
user needs in these systems, we found a portion of
developers’ extra work involved finding user requests on
the mailing list. An additional complication with the
mailing list is that developers were already conducting extra
work to filter and prioritize postings of interest. If the right
person does not see the message at the right time, it may
never be addressed.

Design principle. It seems useful to separate requested
features from reported issues in order to direct developers
to requests with high user demand. As our participants
pointed out, foreseeing user needs was an important aspect
of their work, but there was a limit to what they could
predict. A central dashboard dedicated to requested features
may decrease the likelihood that important needs become
buried under reported bugs, giving developers insight into
what is needed and how many people need it. An interface,
possibly a variation of the reddit (http://www.reddit.com/)
format, where developers and end users can view and sort
requested features by popularity, and vote on them with a
simple “thumbs up” and “thumbs down” button, might
prove helpful.

DISCUSSION
Based on our findings, we discuss three themes in the extra
work that scientists do. The first theme is that of sharing as
a continuing commitment. The second theme is that of
grasping the needs of scientists and conveying developer
intent. The third theme is that of efficiently distributing
extra work among sharers and recipients.

Sharing as a Continuing Commitment
Some modes of sharing are an event, e.g., I give my data to
a data manager, thus I have shared it and my effort is
complete. Our findings illustrate that much extra work for
scientific software occurs throughout the lifecycle, not only
as a specific sharing event. We found that, as part of their
regular work practices, when developing a new feature,
participants often first considered the possible range of uses
for their contributions. Consider P40, the developer who
determined his code would be too domain specific to share
with Biopython, P22 who wrote documentation and
provided examples of his NetLogo extension in action, and
P44 who sent an e-mail to the maintainer of a Bioconductor
package asking if certain functionality would be useful. In
many cases, the work did not stop there, particularly for
Bioconductor package maintainers. Extra work actually
reflected an ongoing commitment, in which participants
continued to fix bugs, manage dependencies, answer
questions on the mailing list, implement new features, and
monitor the code usage after the software was in operation.

Some kinds of extra work seem to come at predictable
intervals, whereas others do not. In Bioconductor, for
instance, when preparing initial contributions, would-be
contributors follow specific guidelines outlining submission
requirements. Promoting the software, and demonstrating
its impact are especially important when calls for funding
appear. Other kinds of extra work are more dynamic,
occurring in response to new uses of the software (e.g.,
evaluating new submissions, monitoring code usage) and
changes to other tools on which the software interoperates
(e.g., managing dependencies). We note, however, that the
choices scientists make about the extra work they perform
early on can affect what happens later. For example, once a
scientist writing software understands a need well enough
(e.g., by announcing work in progress), it is likely efficient
at that time to create examples, write documentation, and
make the code flexible. Otherwise, the scientist will have to
spend more time later on fixing bugs, adding badly needed
features, and answering questions that could have likely
been foreseen earlier.

Grasping User Needs, Conveying Developer Intent
Knowledge about broader uses of scientific software must
somehow make its way into the development process if
community needs are to be well served. The participants
that we interviewed considered possible future uses of their
software, often relying on their own intuitions and
experience (e.g., P40, P42). End users often users nudged
developers by suggesting ways to make software
contributions more general, reporting bugs, requesting more
complete documentation, and asking for new features.

We found, however, relatively fewer instances of
developers conveying the intent of their development
trajectories. In many cases, developers announced new
features and major releases of the software, or held
workshops on analyses possible with new analysis

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

427

packages—but after the software went into operation.
Although developers could track activities of other
developers using activity cues available in GitHub, we
found that, in general, end users did not use these features.
Without ways for developers to convey the intent of their
development activities, potential users may simply be
unaware or, or even have any way to discover, that the
functionality they need exists. Broad exposure would also
help increase the probability that errors are corrected before
they have the opportunity to break commonly used
workflows or creep into publications.

Efficiently Distributing Extra Work
It seems useful to think about efficient divisions of labor for
extra work. As we mentioned in the background section,
sharers are in a better position to do some extra work
whereas recipients are better suited to do other extra work.
Interestingly, the incentives to do the work do not
necessarily line up to create an efficient division of labor,
because the recipient, who, as a potential user, has a
pressing current need, generally has a more obvious
incentive.

Future Work
Future studies might investigate variables that influence
who should do extra work. The predictability of the need
for the extra work, for instance, may be of interest. If the
sharer understands what is actually needed, the sharer will
be in a better position to implement it, since the sharer
understands the code. Another variable of interest might be
how many people actually need what the extra work
accomplishes. If many people will benefit, the sharer may
be more inclined to do the extra work, especially if the use
of the software matters to them for funding purposes (e.g.,
P27, P22, P29, P34). In sum, we hypothesize that if a need
is predictable, and many users need it, it is more efficient
for the sharer to do the work. Otherwise, the recipient
should do the work because the sharer does not sufficiently
understand what is actually needed, and only the recipient
will benefit.

In addition, future studies might explore architectural
principles for scientific software that lower the barriers to
contribution and allow end user customization, thereby
relaxing dependencies on the original developers. Usable
APIs for instance, may make it easier for end users to
contribute functionality. NetLogo end users, for example,
can contribute small Java extensions without understanding
the core functionality of NetLogo, which is written in Scala,
another programming language. These extensions serve the
contributor’s needs, and potentially many others’, without
imposing extra work on the core developers. Toolkits [13]
that allow end users to make customizations to the software
but maintain the same look and feel of the core software
(e.g., same user interface elements), may be valuable in
instances, for example, where few users need the features.

Finally, future work might include broadening studies of
extra work on software to other scientific disciplines where

software sharing behaviors may be less prevalent. For
instance, Velden [36] found that the field of synthetic
chemistry emphasizes individual skill and personal
reputation over team efforts and collective achievements.
Chemical databases that specify molecular structures play a
particularly crucial role in the routine work of synthesis,
and discussions of important synthesis details are often kept
private in order to hold competition at bay. Field specific
characteristics may therefore influence questions around the
conditions in which scientists are likely to perform extra
work. In particular, serving others’ interests may in fact be
a disincentive, rather than an incentive, to share.

Implications for Funding Agencies
As others have argued, studies of scientific collaborative
work can have important implications for funding policy
[19]. This paper provides a comprehensive list of the extra
work associated with developing open-source scientific
software, as opposed to developing such software for
oneself. The results suggest important considerations for
funding scientific work of which software development is a
component. The potential payoffs of extra work are
substantial, provided that there exists a sizable community
to use the software, because other scientists can use the
software to discover new knowledge. Understanding the
rich variety of extra work that scientists conduct can better
inform funding policy makers of how to design practices
and formulate objectives that align with these efforts. Such
an understanding may also support proposal reviewers in
evaluating software maintenance strategies, which are
currently part of data management plans. Recognizing the
value of this extra work, funders may be more willing to
provide more substantial financial support to address
scientific software maintenance efforts. There may also be a
role for industrial funders in motivating scientists to
perform extra work. Scientists interested in
commercializing their software, for example, may align
with industry partners who recognize its commercial
potential and are willing to fund its development or pay a
portion of their own developers directly to work on it. With
adequate support, the software can continue effectively,
building new functionality, and supporting users over time.

CONCLUSION
Our work is part of a growing body of research on the
sharing and circulation of scientific resources. It is one of
the few studies to examine extra effort associated with
sharing software, even though software is of vital
importance to nearly every scientific result. We found that
both paid and unpaid contributors conducted a rich set of
extra work, and that several considerations led them to do
it. We also identified design principles that can facilitate
extra work among sharers and recipients. In contrast to
previous work showing that reputation for contributions to
software does not matter to scientists [16,17], we found that
software use matters to them for funding purposes.
Moreover, developers might do more to convey their intent
to end users if extra work is to be efficiently distributed.

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

428

Our results open up opportunities for tool design, policy,
and future empirical studies of scientific software
development in CSCW.

ACKNOWLEDGMENTS
We wish to thank all of our participants for their time, and
our anonymous reviewers for their valuable feedback on an
earlier version of this paper. We also gratefully
acknowledge support of the Alfred P. Sloan Foundation, the
National Science Foundation awards 1064209, 1111750,
and 0943168, and the Google Open Source Programs
Office.

REFERENCES
1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and

Lipman, D.J. Basic local alignment search tool. Journal
of Molecular Biology 215, (1990), 403–410.

2. Bietz, M. Standardization in Large-Scale Collaborative
Science: The Ocean Sampling Day. Workshop on
Sharing, re-use and circulation of resources in
cooperative scientific work at CSCSW 2014, (2014), 1–
2.

3. Bietz, M.J., Baumer, E.P.S., and Lee, C.P. Synergizing
in Cyberinfrastructure Development. Computer
Supported Cooperative Work (CSCW) 19, 3-4 (2010),
245–281.

4. Bietz, M.J., Paine, D., and Lee, C.P. The work of
developing cyberinfrastructure middleware projects.
Proceedings of the ACM 2013 conference on Computer
supported cooperative work, ACM Press (2013), 1527–
1538.

5. Birnholtz, J. and Bietz, M. Data at Work: Supporting
Sharing in Science and Engineering. Proceedings of the
2003 international ACM SIGGROUP conference on
Supporting group work, (2003), 339–348.

6. Cock, P.J. a, Antao, T., Chang, J.T., et al. Biopython:
freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics
(Oxford, England) 25, 11 (2009), 1422–3.

7. Corbin, J. and Strauss, J. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage, 2008.

8. Crowston, K., Wei, K., Howison, J., and Wiggins, A.
Free/Libre open-source software development: what we
know and what we do not know. ACM Computing
Surveys 44, 2 (2012), 1–35.

9. Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social
Coding in GitHub: Transparency and Collaboration in
an Open Software Repository. Proceedings of the ACM
2012 conference on Computer Supported Cooperative
Work, (2012), 1277–1286.

10. Faniel, I.M. and Jacobsen, T.E. Reusing Scientific Data:
How Earthquake Engineering Researchers Assess the

Reusability of Colleagues’ Data. Computer Supported
Cooperative Work (CSCW) 19, 3-4 (2010), 355–375.

11. Gentleman, R.C., Carey, V.J., Bates, D.M., et al.
Bioconductor: open software development for
computational biology and bioinformatics. Genome
biology 5, 10 (2004), R80.

12. Grudin, J. Why CSCSW Applications Fail: Problems in
the Design and Evaluation of Organizational Interfaces.
Proceedings of the 1988 ACM conference on Computer-
supported cooperative work, (1988), 85–93.

13. Von Hippel, E. and Katz, R. Shifting Innovation to
Users via Toolkits. Management science 48, 7 (2002),
821–833.

14. Von Hippel, E. The Sources of Innovation. Oxford
University Press, New York, New York, USA, 1988.

15. House, N. Van, Butler, M., and Schiff, L. Cooperative
Knowledge Work and Practices of Trust: Sharing
Environmental Planning Data Sets. Proceedings of the
1998 ACM conference on Computer supported
cooperative work, (1998), 335–343.

16. Howison, J. and Herbsleb, J.D. Scientific software
production: incentives and collaboration. Proceedings of
the ACM 2011 conference on Computer supported
cooperative work, (2011), 513–522.

17. Howison, J. and Herbsleb, J.D. Incentives and
integration in scientific software production.
Proceedings of the ACM 2013 Conference on
Computer-Supported Cooperative Work, ACM Press
(2013), 459–470.

18. Huang, X., Ding, X., Lee, C.P., Lu, T., Gu, N., and Hall,
S. Meanings and Boundaries of Scientific Software
Sharing. Proceedings of the ACM 2013 conference on
Computer supported cooperative work, (2013), 423–
434.

19. Jackson, S.J., Steinhardt, S.B., and Buyuktur, A. Why
CSCW needs science policy (and vice versa).
Proceedings of the ACM 2013 Conference on
Computer-Supported Cooperative Work, ACM Press
(2013), 1113–1124.

20. Lakhani, K. and Hippel, E. Von. How open source
software works: “free” user-to-user assistance. Research
policy 32, July 2002 (2003), 923–943.

21. Lakhani, K. and Wolf, R. Why Hackers Do What They
Do: Understanding Motivation and Effort in Free / Open
Source Software Projects. Perspectives on free and open
source software, (2005), 1–27.

22. Lee, C.P., Dourish, P., and Mark, G. The human
infrastructure of cyberinfrastructure. Proceedings of the
2006 20th anniversary conference on Computer
supported cooperative work, ACM Press (2006), 483–
492.

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

429

23. Lerner, J. and Tirole, J. Some Simple Economics of
Open Source. The journal of industrial economics 50, 2
(2002), 197–234.

24. Marlow, J., Dabbish, L., and Herbsleb, J. Impression
Formation in Online Peer Production: Activity Traces
and Personal Profiles in GitHub. Proceedings of the
ACM 2013 Conference on Computer-Supported
Cooperative Work, ACM Press (2013), 117–128.

25. Marlow, J. and Dabbish, L. Activity traces and signals
in software developer recruitment and hiring.
Proceedings of the ACM 2013 conference on Computer
supported cooperative work, ACM Press (2013), 145–
156.

26. Millerand, F., Ribes, D., Baker, K.S., and Bowker, G.C.
Making an Issue out of a Standard: Storytelling
Practices in a Scientific Community. Science,
Technology & Human Values 38, 1 (2012), 7–43.

27. Orlikowski, W. Learning from notes: Organizational
issues in groupware implementation. Proceedings of the
1992 ACM conference on Computer-supported
cooperative work, (1992), 362–369.

28. Roberts, J.A., Hann, I., Slaughter, S.A., and Donahue,
J.F. Understanding the motivations, participation, and
performance of open source software developers: A
longitudinal study of the Apache projects. Management
science 52, 7 (2006), 984–999.

29. Rolland, B. and Lee, C. Beyond trust and reliability:
reusing data in collaborative cancer epidemiology
research. Proceedings of the ACM 2013 conference on
Computer supported cooperative work, (2013), 435–
444.

30. Segal, J. Some Problems of Professional End User
Developers. IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2007), Ieee
(2007), 111–118.

31. Shah, S. Motivation, Governance, and the Viability of
Hybrid Forms in Open Source Software Development.
Management Science 52, 7 (2006), 1000–1014.

32. SocioCultural Research Consultants, L. Dedoose, web
application for managing, analyzing, and presenting
qualitative and mixed method research data. 2013.

33. Spjuth, O., Alvarsson, J., Berg, A., et al. Bioclipse 2: a
scriptable integration platform for the life sciences.
BMC bioinformatics 10, (2009), 397.

34. Spjuth, O., Helmus, T., Willighagen, E.L., et al.
Bioclipse: an open source workbench for chemo- and
bioinformatics. BMC bioinformatics 8, (2007), 59.

35. Vasilescu, B., Serebrenik, A., Devanbu, P., and Filkov,
V. How social Q&A sites are changing knowledge
sharing in open source software communities.
Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing, ACM
Press (2014), 342–354.

36. Velden, T. Explaining field differences in openness and
sharing in scientific communities. Proceedings of the
ACM 2013 Conference on Computer-Supported
Cooperative Work, ACM Press (2013), 445–458.

37. Wilensky, U. NetLogo. 1999.
http://ccl.northwestern.edu/netlogo/.

38. Ye, Y. and Kishida, K. Toward an Understanding of the
Motivation of Open Source Software Developers.
Proceedings of the 2003 International Conference on
Software Engineering, (2003), 419–429.

39. Zimmerman, A. Not by metadata alone: the use of
diverse forms of knowledge to locate data for reuse.
International Journal on Digital Libraries 7, 1-2 (2007),
5–16.

Scientific Domains CSCW 2015, March 14-18, 2015, Vancouver, BC, Canada

430

